

2024年高考真题 + 2024年模拟新题 ◄ 展新

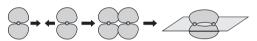
对点集中训练,针对性突破高考易错点,重难点 **局 腐**

天津出版传媒集团 天津人 & & & & &

島は学

考点1	物质的分类 化学用语	1
考点 2	N _A 综合考查 ······	3
考点3	氧化还原反应	5
考点 4	化学方程式或离子方程式正误判断	7
考点 5	离子共存与离子推断	9
考点 6	信息型方程式的书写	11
考点 7	金属及其化合物的性质	13
考点 8	非金属及其化合物的性质	16
考点 9	元素及其化合物综合应用——化学与 STSE	19
考点 10	元素及其化合物综合应用——元素及其化合物间的转化	21
考点 11	物质的量应用于化学反应的计算	23
素养提升	+练(一) 无机工艺流程──分离提纯型 ····································	25
素养提升	├练(二) 无机工艺流程——物质制备型 ····································	28
考点 12	元素周期表和元素周期律——文字叙述型	31
考点 13	元素周期表和元素周期律——图文结合型	33
考点 14	反应热	36
考点 15	新型化学电源	38
考点 16	电解原理及应用	41
考点 17	电极反应式书写	44
考点 18	金属的腐蚀与防护	47
考点 19	化学反应过程及反应机理分析	49
考点 20	化学反应速率	52
考点 21	化学平衡及平衡移动	55
考点 22	化学平衡常数及平衡计算	58
考点 23	化学平衡图像分析	51
考点 24	弱电解质的电离平衡	54
考点 25	水的电离及 pH	67

考点 26	盐类的水解	• 70
考点 27	粒子浓度的大小比较	• 73
考点 28	难溶电解质的沉淀溶解平衡	• 75
考点 29	滴定曲线及拓展应用	• 77
素养提升	练(三) 化学反应原理——化学平衡与反应机理综合考查	80
素养提升	练(四) 化学反应原理——热学与电学、化学平衡综合考查	83
素养提升	练(五) 化学反应原理——物质结构、化学平衡综合考查	86
考点 30	基本实验操作	89
考点 31	物质的检验和分离、提纯	92
考点 32	实验仪器的合理选用	94
考点 33	实验方案的设计与评价	96
考点 34	无机物制备型综合实验	. 99
考点 35	有机物制备型综合实验	102
考点 36	定量分析型综合实验······	105
考点 37	性质验证型综合实验	108
考点 38	原理探究型综合实验	111
考点 39	烃及烃的衍生物的结构与性质	114
考点 40	同分异构体的判断与书写	116
考点 41	有机物间的转化及综合推断······	118
考点 42	基本营养物质 有机高分子化合物	121
考点 43	有机合成线路设计	123
素养提升	练(六) 有机推断与合成	126
考点 44	原子结构与性质	130
考点 45	分子结构与性质	132
考点 46	晶体结构与性质	135
考点 47	晶胞计算	138


考点 1 物质的分类 化学用语

真题导向练

- **1** [2024 · 湖北卷] 化学用语可以表达化学过程,下列化学用语表达错误的是 ()
- A. 用电子式表示 Cl₂ 的形成: : Cl·+· Cl:---

: ci : ci :

- B. 亚铜氨溶液除去合成氨原料气中的 CO: [Cu(NH₃)₂]²⁺+CO+NH₃ ➡ [Cu(NH₃)₃CO]²⁺
- C. 用电子云轮廓图示意 p-p π 键的形成:

D. 制备芳纶纤维凯芙拉:

- **②**[2021 · 浙江 6 月选考] 下列物质属于纯净物的是 ()
- A. 汽油 B. 食醋 C. 漂白粉 D. 小苏打
- **3**[2021·北京卷]下列化学用语或图示表达不正确的是 ()
- A. N₂的结构式:N≡N
- B. Na⁺的结构示意图:(+11)2 8
- C. 溴乙烷的分子模型:

- D. CO₂ 的电子式: O C O
- ▲[2021・辽宁卷]下列化学用语使用正确的是()
- A. 基态 C 原子价电子排布图: ↑ ↑ ↑ ↑ ↑ ↑
- B. Cl⁻结构示意图:(+18) 2 8 8
- C. KCl 形成过程:K·+·Cl :→K :Cl :
- D. 质量数为 2 的氢核素: 1H

- **⑤**[2020• 江苏卷] 反应 $8NH_3 + 3Cl_2 = 6NH_4Cl + N_2$ 可用于氯气管道的检漏。下列表示相关微粒的化学用语正确的是
- A. 中子数为9的氮原子:⁹N
- B. N₂ 分子的电子式:N::N
- C. Cl₂分子的结构式:Cl-Cl
- D. Cl⁻的结构示意图:(+17)287

模拟预测练

考向1 物质的分类

- **⑥**[2024·江西赣州模拟]杭州亚运会首次实现亚运会"碳中和",下列属于有机高分子材料的是()
- A. "大莲花"场馆的主体结构材料——钢
- B. 场馆顶部的覆盖膜——聚四氟乙烯
- C. 场地的防滑涂层——石墨烯
- D. 主火炬使用的可再生燃料——甲醇
- ⑦[2024・四川雅安模拟]下列物质的分类正确的是 ()
- A. 石墨烯——烯烃
- B. 有色玻璃——固溶胶
- C. 油脂——高分子化合物
- D. 冰醋酸——混合物
- **3**[2024·江西部分学校月考]近日,陕西考古博物馆推出古代画展,其中《舞女图》上的女孩比了个红"心"。古代常使用下列颜料,其中呈红色且属于盐类的是
- A. 土红(Fe₂O₃)
- B. 雌黄(As₂S₃)
- C. 朱砂(HgS)
- D. 氯铜矿[Cu₂(OH)₃Cl]
- **9**[2024·河南南阳一中月考]下列选项中物质的分类正确的是 ()

选项	胶体	碱	酸性 氧化物	混合物	非电解质
A	烟雾	烧碱	CO_2	盐酸	氨水
В	海水	纯碱	СО	福尔马林	氯气
С	淀粉溶液	熟石灰	H_2O	水玻璃	甲烷
D	有色玻璃	氢氧化钾	SO_2	铝热剂	CO_2

考向2 化学用语

●[2024·甘肃高考适应性考试]下列说法正确的是 ()

- A. SF。空间结构模型:
- B. 基态 Si 的价层电子排布图: [i+1] [i+1
- C. 硫酸钾的电子式:2K⁺[O: S:O]²⁻
- D. 卤族元素电负性变化趋势: 4 3 2 F Cl Br
- ●[2024·江西上饶六校联考]下列化学用语表示 正确的是 ()
- A. 中子数为8的碳原子:14C
- B. 过氧化氢的电子式: $H^+[\ :\ O\ ::\ O\ :]^{2^-}H^+$
- C. HCl 的 s-p σ 键电子云图形:
- D. 基态 P 原子的价层电子轨道表示式:
- №[2024·江西贵溪实验中学月考]下列化学用语表述正确的是
- A. 基态 Fe 的电子排布式:[Ar]3d⁶
- B. BCl₃ 的球棍模型:
- D. p-p σ键电子云图形:
- №[2024・江西南昌十九中模拟]下列化学用语表示正确的是
- A. 用电子式表示 HCl 的形成过程: H * + · Ci: → H * [· Ci :] -
- B. 2-丁烯的键线式:///
- C. 邻羟基苯甲醛分子内氢键示意图:

D. 基态氧原子核外电子轨道表示式:

$$\begin{array}{c|ccc}
\uparrow \downarrow & \uparrow \downarrow & \downarrow & \uparrow \downarrow \downarrow \\
1s & 2s & 2p &
\end{array}$$

- №[2024・广东六校联考] 化学用语是学习化学的 重要工具。下列化学用语表述不正确的是 ()
- A. 丙炔的键线式:=
- B. 中子数为 20 的氯原子: 37 Cl
- C. CH₃ 的电子式:[H: C:H]⁺
- D. 用原子轨道描述氢原子形成氢分子的过程:

- **⑤**[2024·江西南昌三校联考] 使用 Zn-Mn 双原子电催化剂,可以实现以 N_2 、 CO_2 和水为前驱体制得尿素 $CO(NH_2)_2$,下列有关表述错误的是 ()
- A. Mn 元素位于周期表的第ⅡB族
- Β. Ν₂ 中的共价键类型:σ键和π键
- C. CO₂ 的电子式:: O :: C :: O :
- D. 尿素分子的空间填充模型: 2000
- №[2024・江西宜春中学质检]下列有关化学用语错误的是()
- A. 中子数为 10 的氧原子: 18 O
- B. NH₃ 的 VSEPR 模型:
- C. 甲胺的电子式:H:C:N:H
- D. 乙烯分子中的 π 键:_H
- №[2024・湖南衡阳期末]下列化学用语表示错误的是 ()
- A. 基态镓原子的电子排布式: [Ar]4s24p1
- B. 3-氨基丁酸的结构简式: CH₃CH(NH₂)CH₂COOH
- C. 砷化氢(AsH₃)分子的球棍模型:●

考点 2 N_A 综合考查

真题导向练

❶「2024·黑吉辽卷〕硫及其化合物部分转化关系 如图。设 N 、为阿伏伽德罗常数的值,下列说法正 确的是

- A. 标准状况下,11.2 L SO₂ 中原子总数为 0.5 N_A
- B. 100 mL 0.1 mol·L⁻¹ Na₂SO₃ 溶液中,SO₃²⁻ 数 目为 0.01N
- C. 反应①每消耗 3.4 g H₂S, 生成物中硫原子数目 为 0.1N_A
- D. 反应②每生成1 mol 还原产物,转移电子数目 为 2N A
- **②**[2024 · 安徽卷] N_A 是阿伏伽德罗常数的值。 下列说法正确的是
- A. 标准状况下, 2.24 L NO 和 N₂O 混合气体中氧 原子数为 0.1N_A
- B. 1 L 0.1 mol·L⁻¹ NaNO₂ 溶液中 Na⁺和 NO₂ 数均为 0.1N。
- C. 3.3 g NH₂OH 完全转化为 NO₂ 时,转移的电子 数为 0.6NA
- D. 2.8 g N₂ 中含有的价电子总数为 0.6 N_A
- 3[2023·全国甲卷] N_{Λ} 为阿伏伽德罗常数的值。 下列叙述正确的是
- A. 0.50 mol 异丁烷分子中共价键的数目为 $6.5N_A$
- B. 标准状况下, 2. 24 L SO₃ 中电子的数目为 $4.00N_{\rm A}$
- C. 1.0 L pH = 2 的 H_2SO_4 溶液中 H^+ 的数目为
- D. 1.0 L 1.0 mol·L⁻¹ 的 Na₂CO₃ 溶液中 CO₃²⁻ 的数目为 1.0N a
- ④ 「2022・湖南卷〕 甲基丙烯酸甲酯是合成有机玻 璃的单体。

旧法合成的反应:

 $(CH_3)_2C \longrightarrow (CH_3)_2C(OH)CN$ $(CH_3)_2C(OH)CN+CH_3OH+H_2SO_4 \longrightarrow$ $CH_2 = C(CH_3)COOCH_3 + NH_4HSO_4$

新法合成的反应:

 $CH_3C \equiv CH + CO + CH_3OH \xrightarrow{Pd}$ $CH_2 = C(CH_3)COOCH_3$

下列说法错误的是(阿伏伽德罗常数的值为 N_a)

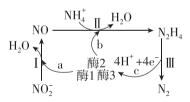
- A. HCN的电子式为H:C::N:
- B. 新法没有副产物产生,原子利用率高
- C. 1 L 0.05 mol·L⁻¹ 的 NH₄HSO₄ 溶液中 NH₄⁺ 的微粒数小于 0.05N A
- D. Pd 的作用是降低反应的活化能, 使活化分子数 目增多,百分数不变
- **⑤**[$2022 \cdot 全国甲卷] N_A 为阿伏伽德罗常数的值,$ 下列说法正确的是
- A. 25 ℃, 101 kPa 下, 28 L 氢气中质子的数目为
- B. 2.0 L 1.0 mol·L⁻¹ AlCl₃ 溶液中, Al³⁺的数目 为 2.0 N A
- C. 0.20 mol 苯甲酸完全燃烧,生成 CO2 的数目为 $1.4N_{\Lambda}$
- D. 电解熔融 CuCl₂, 阴极增重 6.4 g, 外电路中通过 电子的数目为 0.10N_A
- **⑥**[2021・浙江 6 月选考] 设 N_A 为阿伏伽德罗常 数的值,下列说法不正确的是
- A. 标准状况下,1.12 L 18 O₂ 中含有中子数为 N_A
- B. 31 g P₄(分子结构:← $1.5N_A$
- C. 100 mL 0.1 mol·L⁻¹ 的 NaOH 水溶液中含有 氧原子数为 0.01N_A
- D. 18.9 g 三肽 C₆ H₁₁ N₃ O₄ (相对分子质量:189)中 的肽键数目为 $0.2N_{A}$

模拟预测练

- ⑦「2024·江西名校协作体期中〕设阿伏伽德罗常 数的值为 NA,下列叙述中正确的是
- A. 标准状况下,2.24 L 水中含有 0.1N_A 个水分子
- B. 常温常压下,32 g SO₂ 含有的分子数约为 3.01×10²³
- C. 2 mol NaOH 的摩尔质量为 80 g・mol⁻¹
- D. H₂ 的气体摩尔体积约为 22.4 L·mol⁻¹

- **8**[2024·江西吉安宁冈中学期中] 用 N_A 表示阿 伏伽德罗常数的值,下列说法正确的是 ()
- A. 5.6 L 由 O_3 、 SO_2 组成的混合气体中含有 O 原子的数目可能为 $0.6N_\Delta$
- B. 常温下,1 L pH=2 的硫酸溶液中由水电离出的 H^+ 数目为 0.01 N_{Δ}
- C. 5.6 g 铁与稀硝酸反应生成 0.08 mol NO,转移 电子数为 0.3 N_A
- D. 20 g D₂ ¹⁸ O 中质子数目与中子数目均为 N_A
- ⑤[2024·江西抚州金溪一中检测]已知:N_A为阿伏伽德罗常数的值。2Ag + 2H₂O₂ + 2H₂SO₄
 270 ℃ Ag₂SO₄+SO₂ ↑ +O₂ ↑ +4H₂O。下列叙述正确的是
- A. 标准状况下, 2. 24 L SO₂ 中 S 原子的孤电子对数为 $0.2N_A$
- B. 100 mL pH = 1 的硫酸溶液中氢离子数为 $0.02N_A$
- C. 生成 1 mol Ag₂SO₄ 时转移电子数为 4N_A
- D. 1 mol H₂O₂ 中含非极性键数为 3N_A
- ●[2024・江西赣州全南中学期中]设 N_A 为阿伏伽德罗常数的值,下列说法正确的是
- A. 1 mol Na₃ N、NaN₃ 混合物所含的阴离子数之和 可能为 2N_A
- B. 标准状况下,11.2 L CH_3Cl 中含有的极性键数目为 $2N_A$
- C. 将 1 mol Cl₂ 通入水中,所得溶液中 HClO、Cl⁻、ClO⁻粒子数之和为 2N_A
- D. 0.5 mol·L⁻¹ 的 NaCl 溶液中含 Cl⁻的数目为 0.5N_A
- $lackbox{1}$ [2024·江西重点中学盟校联考]设 N_A 为阿伏伽德罗常数的值。下列说法正确的是 ()
- A. 1.0 L 0.01 mol·L⁻¹ 的 $K_2Cr_2O_7$ 酸性溶液加水稀释时,溶液中 $Cr_2O_7^{2-}$ 的数目始终为 $0.01N_A$
- B. 1 mol [Co(NH₃)₅Cl]Cl₂ 含有 σ 键的数目 是 21N_A
- C. 将 4.6 g 钠用铝箔包裹并刺小孔,与足量水充分 反应,生成 H₂ 分子数为 0.1 N_A
- D. 室温下 pH=11 的 Na_2CO_3 溶液,由水电离出的 OH^- 数目为 $0.001N_A$
- №[2024・江西师大附中期中]设 N_A 为阿伏伽德罗常数的值,下列叙述正确的是()

- A. 标准状况下, 32 g SO_3 含有原子的数目为 $1.6N_A$
- B. 1 mol Al³⁺ 完全转化为[Al(OH)₄]⁻ 转移电子数 为 4N₄
- C. 1 mol·L⁻¹ 的 NaClO 溶液中含有 ClO⁻的数目 小于 N_A
- D. 标准状况下,11.2 L CH_4 与 11.2 L Cl_2 在光照下充分反应后,气体分子数为 N_A
- $lackbox{10}[2024 \cdot 湖北武汉华师一附中期中] 设 <math>N_A$ 为阿 伏伽德罗常数的值。下列说法错误的是 ()
- A. 1 mol SiO₂ 晶体中含有的共价键数目为 $4N_A$
- B. $142 \text{ g Na}_2 \text{SO}_4$ 和 $\text{Na}_2 \text{HPO}_4$ 的固体混合物中所含阴、阳离子的总数目为 $3N_A$
- C. $1 L 1 mol \cdot L^{-1}$ 的 NH_4 Br 溶液中通入适量氨气后呈中性,此时溶液中 NH_4^+ 的数目小于 N_A
- D. 锌与某浓度的浓硫酸反应,生成混合气体 22.4 L (标准状况),锌失去电子数目为 2N_A
- **①**[2024·江西九江同文中学多校联考] 工业干法 制备高铁酸钠的反应为 $2\text{FeSO}_4 + 6\text{Na}_2\text{O}_2 ===$ $2\text{Na}_2\text{FeO}_4 + 2\text{Na}_2\text{O} + 2\text{Na}_2\text{SO}_4 + \text{O}_2$ ↑,设 N_A 为阿伏伽德罗常数的值。下列说法正确的是
- A. 1 L 0.5 mol·L⁻¹ FeSO₄ 溶液中含氧原子的总数为 2N_A
- B. 当产生 2.24 L(标准状况下)O₂ 时,转移电子数 为 0.8N_A
- C. 0.1 mol Na₂O 含有的质子总数为 3N_A
- D. 0.1 mol Na₂O₂ 中含 O—O 的数目为 0.2N_A
- **⑤**[2024・江西宜春宜丰中学期中] 高锰酸钾 $(KMnO_4)$ 是一种重要的化工原料,也是实验室中常用的强氧化剂,在生物医药方面也有重要用途。工业生产高锰酸钾涉及的一个反应为 $3K_2MnO_4$ + $2CO_2$ —— $2KMnO_4$ + MnO_2 ↓ + $2K_2CO_3$,设 N_A 为阿伏伽德罗常数的值,下列说法错误的是
- A. 11 g 金属锰其原子处于基态时,含有的未成对电子数为 N_A
- B. 该反应中有 $1 \mod CO_2$ 参与反应时,转移的电子数为 N_A
- C. 2 L 0.5 mol·L⁻¹ 的 K₂CO₃ 溶液中 CO₃⁻ 和 HCO₃⁻ 总数为 N_A
- D. 标准状况下, 11. 2 L CO_2 中含有的 π 键数目 为 N_A


考点3 氧化还原反应

真题导向练

1 [2024 · 黑吉辽卷] H₂O₂ 分解的"碘钟"反应美 轮美奂。将一定浓度的三种溶液(①H₂O₂溶液; ②淀粉、丙二酸和 MnSO』混合溶液;③KIO。、稀硫 酸混合溶液)混合,溶液颜色在无色和蓝色之间来回

振荡,周期性变色;几分钟后,稳定为蓝色。下列说 法错误的是

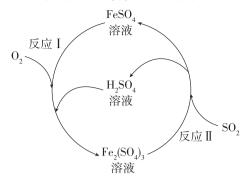
- A. 无色→蓝色:生成 I。
- B. 蓝色→无色:I₂转化为化合态
- C. H₂O₂起漂白作用
- D. 淀粉作指示剂
- ②「2023・全国乙巻〕下列应用中涉及到氧化还原 反应的是
- A. 使用明矾对水进行净化
- B. 雪天道路上撒盐融雪
- C. 暖贴中的铁粉遇空气放热
- D. 荧光指示牌被照发光
- ❸「2022・湖南卷〕科学家发现某些生物酶体系可 以促进 H^+ 和 e^- 的转移(如 a、b 和 c),能将海洋中的 NO₂ 转化为 N₂ 进入大气层,反应过程如图所示。 下列说法正确的是

- A. 过程 I 中 NO⁻ 发生氧化反应
- B. a和b中转移的e-数目相等
- C. 过程 $\|$ 中参与反应的 $n(NO): n(NH_4^+)=1:4$
- D. 过程 I → III 的总反应为 NO₂ + NH₄ = N₂ ↑ + $2H_{2}O$
- 4(不定选)「2021・山东巻」 实验室中利用固体 KMnO。进行如图所示实验,下列说法错误的是

- A. G与 H 均为氧化产物
- B. 实验中 KMnO4 只作氧化剂

- C. Mn 元素至少参与了 3 个氧化还原反应
- D. G与H的物质的量之和可能为 0.25 mol

模拟预测练


考向 1 氧化还原反应的概念和计算

- **5**[2024 · 江西部分学校月考] 用 FeCl。溶液与 NaBH4(H元素为-1价)溶液反应制备纳米零价铁 的化学方程式为 FeCl₂ + 2NaBH₄ + 6H₂O ===Fe+ 2B(OH)₃+2NaCl+7H₂ ↑。下列有关说法正确的 是 ()
- A. Fe 与 B 均属于副族元素
- B. 若生成 7 mol H₂,其中 4 mol 是氧化产物
- C. FeCl。是还原剂
- D. 每生成 1 mol Fe 反应转移 2 mol 电子
- ⑥「2024·北京四中期中〕海水提溴过程中发生反 $\dot{\mathbf{D}}$: $3\mathrm{Br}_2 + 6\mathrm{Na}_2\mathrm{CO}_3 + 3\mathrm{H}_2\mathrm{O} = 5\mathrm{NaBr} + 1$ 6NaHCO₃。下列说法正确的是
- A. 标准状况下 2 mol H₂O 的体积约为 44.8 L
- B. | 代表 NaBrO
- C. 反应中消耗 3 mol Br₂ 转移的电子数约为 5× 6.02×10^{23}
- D. 反应中氧化产物和还原产物的物质的量之比为
- ●「2024・江西吉安宁冈中学期中」金属钛(Ti)性 能优越,被称为继铁、铝后的"第三金属"。工业上以 金红石为原料制取 Ti 的反应为
- $(1)a \operatorname{TiO}_2 + b \operatorname{Cl}_2 + c \operatorname{C} = \frac{1173 \text{ K}}{} a \operatorname{TiCl}_4 + c \operatorname{CO},$
- (2)TiCl₄ +2Mg $=\frac{1220\sim1420 \text{ K}}{}$ Ti+2MgCl_{2 \circ}

关于反应(1)(2)的分析不正确的是

- ①TiCl₄ 在反应(1)中是还原产物,在反应(2)中是氧 化剂:
- ②C、Mg 在反应中均为还原剂,被还原;
- ③在反应(1)(2)中的还原性 C>TiCl₄,Mg>Ti;
- (4)a = 1, b = c = 2;
- ⑤每生成 19.2 g Ti(A_r=48),反应(1)(2)中共转移 4.8 mol e⁻ °
- A. ①②④
- B. 234
- C. 34
- D. 25

8[2024·江西宜春宜丰中学月考]硫酸亚铁溶液可用于催化脱除烟气中的二氧化硫等有害气体,反应原理如图所示。下列说法正确的是

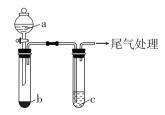
- A. "反应 I"中氧化剂和还原剂的物质的量之比为 4:1
- B. "反应Ⅱ"的离子方程式为 2Fe³⁺ + SO₂ + 2H₂O ===2Fe²⁺ + SO₄²⁻ + 4H⁺
- C. 反应一段时间后,溶液中 $c(H_2SO_4)$ 保持不变
- D. 反应中每脱除 11.2 L SO₂,转移 1 mol 电子

考向2 氧化还原反应的基本规律及应用

- **⑨**[2024·江西赣州全南中学期中]在室温下,发生下列几种反应:
- $16H^{+} + 10Z^{-} + 2XO_{4}^{-} = 2X^{2+} + 5Z_{2} + 8H_{2}O$
- $22A^{2+} + B_2 = 2A^{3+} + 2B^{-}$
- $32B^{-} + Z_2 = B_2 + 2Z^{-}$

根据上述反应,下列说法不正确的是 ()

- A. 氧化性强弱顺序为 XO₄ > Z₂ > B₂ > A³⁺
- B. $X^{2+} \not\in XO_4^-$ 的还原产物, $B_2 \not\in B^-$ 的氧化产物
- C. 要只除去含有 A^{2+} Z^- 和 B^- 混合液中的 A^{2+} ,应 加入 Z_2
- D. 在溶液中可能发生反应: 8H⁺ + 5A²⁺ + XO₄⁻
 ==-X²⁺ + 5A³⁺ + 4H₂O
- (0)[2024 · 湖南衡阳八中月考]已知氧化还原电对的标准电极电势(E^{θ})越高,其中氧化剂的氧化性越强。现有 6 组标准电极电势数据如表所示:


氧化还原电对(氧化型/还原型)	标准电极电势(E°/V)
$\mathrm{Fe^{3+}/Fe^{2+}}$	0.77
PbO ₂ /PbSO ₄	1.69
$\mathrm{MnO_4^-/Mn^{2+}}$	1.51
Cl ₂ /Cl ⁻	1.36
Sn ⁴⁺ /Sn ²⁺	0.151
	0.54

下列分析错误的是

- A. 向含 2 mol FeCl₂ 的溶液中加 1 mol PbO₂ 可观察到黄绿色气体
- B. 往淀粉-KI溶液中滴加 SnCl₄溶液,溶液不变蓝
- C. 还原性:Sn²⁺>Fe²⁺>Cl⁻
- D. 酸化高锰酸钾溶液时,不可使用盐酸
- ●[2024・江西宜春丰城中学月考]利用 V₂O₃ 制备氧 钒碱式碳酸铵晶体{(NH₄)₅[(VO)₆(CO₃)₄(OH)₉]・10H₂O}的工艺流程如下:

已知: +4 价钒在弱酸性环境中具有还原性。下列说法正确的是 ()

- A. V_2O_3 制备 NaVO₃ 过程中,氧化剂与还原剂的 物质的量之比为 1:2
- B. 生成 V₂O₅ 的反应为 2NaVO₃ + 2NH₄Cl △ 2NaCl+V₂O₅+2NH₃ ↑
- C. 由 V_2O_5 制备 $VOCl_2$ 的两种路径,路径 I 更符合 绿色化学思想
- D. 路径 Ⅱ 中若盐酸浓度过低,可能生成副产物 VO₂Cl
- №[2024・安徽高考适应性考试]实验是探究元素化合物性质的重要方法。利用下列实验装置和试剂能实现相应元素不同价态间转化的是

选项	试剂			元素不同价态
匹坝	a	b	С	间的转化
A	70%硫酸	亚硫酸钠	新制氯水	$\overset{+6}{S} \overset{+4}{\longrightarrow} \overset{+6}{S} \overset{+6}{\longrightarrow} \overset{+6}{S}$
В	稀硫酸	硫化亚铁	氯化铁溶液	$Fe \xrightarrow{+2} Fe \xrightarrow{+3} Fe$
С	浓硝酸	铜片	水	$\stackrel{+5}{N} \rightarrow \stackrel{+4}{N} \rightarrow \stackrel{0}{N}$
D	浓盐酸	高锰酸钾	溴化钾溶液	$Cl \rightarrow Cl \rightarrow Cl$

考点 4 化学方程式或离子方程式正误判断

真题导向练

①[2024 · 湖北卷] 过量 SO_2 与以下 $0.1 \text{ mol} \cdot L^{-1}$ 的溶液反应,下列总反应方程式错误的是 ()

	溶液	现象	化学方程式
A	Na ₂ S	产生淡黄色 沉淀	$3SO_2 + 2Na_2S \longrightarrow 3S \downarrow + 2Na_2SO_3$
В	FeCl_3	溶液由棕黄 色变浅绿色	2FeCl3 + SO2 + 2H2O $==2FeCl2 + H2SO4 + 2HCl$
С	CuCl ₂	溶液褪色,产生白色沉淀	$SO_2 + 2CuCl_2 + 2H_2O$ $= 2CuCl + H_2SO_4 + 2HCl$
D	Na ₂ CO ₃ (含酚酞)		$2SO_2 + Na_2CO_3 + H_2O$ $CO_2 + 2NaHSO_3$

- ②[2024·全国新课标卷]对于下列过程中发生的 化学反应,相应离子方程式正确的是 ()
- A. 试管壁上的银镜用稀硝酸清洗: Ag + 2H⁺ + NO₃⁻ = Ag⁺ + NO₂ ↑ + H₂O
- B. 工业废水中的 Pb²⁺用 FeS 去除: Pb²⁺ + S²⁻ ==== PbS ↓
- C. 海水提溴过程中将溴吹入 SO₂ 吸收塔: Br₂ + SO₂+2H₂O ===2Br⁻+SO₂²⁻+4H⁺
- D. 用草酸标准溶液测定高锰酸钾溶液的浓度: 2MnO₄⁻+5C₂O₄²⁻+16H⁺===2Mn²⁺+10CO₂↑+ 8H₂O
- ③[2024·全国甲卷]下列过程对应的离子方程式 正确的是 ()
- A. 用氢氟酸刻蚀玻璃: SiO₃²⁻ + 4F⁻ + 6H⁺ === SiF₄ ↑ +3H₂O
- B. 用三氯化铁溶液刻制覆铜电路板: 2Fe³⁺ + 3Cu ===3Cu²⁺ + 2Fe
- C. 用硫代硫酸钠溶液脱氯: S₂O₃²⁻ + 2Cl₂ + 3H₂O ===2SO₃²⁻ + 4Cl⁻ + 6H⁺
- D. 用碳酸钠溶液浸泡锅炉水垢中的硫酸钙: CaSO₄+CO₃²⁻ ===CaCO₃+SO₄²⁻
- ④[2023・全国乙卷]一些化学试剂久置后易发生化学变化。下列化学方程式可正确解释相应变化的是 ()

A	硫酸亚铁溶液出 现棕黄色沉淀	$6 \operatorname{FeSO}_{4} + \operatorname{O}_{2} + 2 \operatorname{H}_{2} \operatorname{O} = $ $2 \operatorname{Fe}_{2} (\operatorname{SO}_{4})_{3} + 2 \operatorname{Fe}(\operatorname{OH})_{2} \checkmark$
В	硫化钠溶液出现 浑浊颜色变深	Na_2S+2O_2 \longrightarrow Na_2SO_4
С	溴 水 颜 色 逐 渐 褪去	$4Br_2 + 4H_2O = HBrO_4 + 7HBr$
D	胆矾表面出现白 色粉末	$CuSO_4 \cdot 5H_2O = CuSO_4 + 5H_2O$

- **⑤**(不定选)[2022 · 湖南卷]下列离子方程式正确的是 ()
- A. Cl₂ 通入冷的 NaOH 溶液: Cl₂ + 2OH⁻ ——Cl⁻ + ClO⁻ + H₂O
- B. 用醋酸和淀粉-KI 溶液检验加碘盐中的 IO₃: IO₃+5I⁻+6H⁺==3I₂+3H₂O
- C. FeSO₄ 溶液中加入 H₂O₂ 产生沉淀: 2Fe²⁺ + H₂O₂+4H₂O ===2Fe(OH)₃ ↓ +4H⁺
- D. NaHCO₃ 溶液与少量的 Ba(OH)₂ 溶液混合: HCO₃ + Ba²⁺ + OH ==== BaCO₃ ↓ + H₂O
- **⑥**[2022・广东巻] 下列关于 Na 的化合物之间转 化反应的离子方程式书写正确的是 ()
- A. 碱转化为酸式盐: OH⁻ + 2H⁺ + CO₃²⁻ ==== HCO₃⁻ +2H₂O
- B. 碱转化为两种盐: 2OH⁻ + Cl₂ === ClO⁻ + Cl⁻ + H₂O
- C. 过氧化物转化为碱: 2O₂²⁻+2H₂O -----4OH⁻+ O₂ ↑
- D. 盐转化为另一种盐: Na₂SiO₃ +2H⁺===H₂SiO₃ ↓ + 2Na⁺
- ⑦[2022・全国甲卷] 能正确表示下列反应的离子 方程式为 ()
- A. 硫化钠溶液和硝酸混合: S²⁻+2H⁺===H₂S↑
- B. 明矾溶液与过量氨水混合:
 Al³⁺ +4NH₃+2H₂O ===AlO₂ +4NH₄ +
- C. 硅酸钠溶液中通入二氧化碳: SiO₃²⁻+CO₂+H₂O ==HSiO₃⁻+HCO₃⁻
- D. 将等物质的量浓度的 Ba(OH)₂ 和 NH₄HSO₄ 溶液 以体积比 1:2 混合:

 $Ba^{2+} + 2OH^{-} + 2H^{+} + SO_{4}^{2-} = BaSO_{4} + 2H_{2}O$

- **8**[2021·湖北卷]对于下列实验,不能正确描述其 反应的离子方程式是 ()
- A. 向氢氧化钡溶液中加入盐酸: H⁺ + OH⁻ ===H₂O
- B. 向硝酸银溶液中滴加少量碘化钾溶液:Ag⁺+I⁻==AgI ↓
- C. 向烧碱溶液中加入一小段铝片: 2Al+2OH⁻+6H₂O ===2[Al(OH)₄]⁻+3H₂ ↑
- D. 向次氯酸钙溶液中通入少量二氧化碳气体: ClO⁻+CO₂+H₂O ——HClO+HCO₃

模拟预测练

- **⑨**[2024·江西名校协作体期中]下列离子方程式 书写错误的是 ()
- A. 向 NH₄HSO₄ 溶液滴加少量 Ba(OH)₂ 溶液:
 Ba²⁺+2OH⁻+H⁺+NH₄⁺+SO₄²⁻ ===H₂O+
 BaSO₄ √+NH₃·H₂O
- B. 向 Mg(HCO₃)₂ 溶液中加入过量 NaOH 溶液:
 Mg²⁺ + 2HCO₃⁻ + 4OH⁻ ── Mg(OH)₂ ↓ +
 2CO₃²⁻ +2H₂O
- C. 向饱和 Na₂CO₃ 溶液中通入过量 CO₂ 气体:
 2Na⁺+CO₃⁻+CO₂+H₂O = 2NaHCO₃ √
- D. 新制氯水中加入少量 CaCO₃: 2Cl₂ + H₂O + CaCO₃ ===Ca²⁺ + 2Cl⁻ + CO₂ ↑ + 2HClO
- ●[2024・江西宜春宜丰中学期中]下列过程中的化学反应,相应的离子方程式正确的是 ()
- A. 用泡沫灭火器灭火原理:2Al³⁺+3CO₃⁻+3H₂O ===2Al(OH)₃ ↓ +3CO₂ ↑
- B. 将氯化银溶于氨水: AgCl + 2NH₃ === Cl⁻ + [Ag(NH₃)₂]⁺
- C. 用漂白液吸收少量二氧化硫气体: SO₂ + H₂O + ClO = SO₂ + Cl + 2H +
- D. 除去苯中混有的少量苯酚: \bigcirc OH + $HCO_3^ \longrightarrow$ \bigcirc O⁻ $+H_2O+CO_2$ \uparrow
- **①**[2024·江西宜春丰城九中月考] 工业上制一元 弱酸——硼酸(H_3BO_3)常采用硼镁矿($2 Mg_2B_2O_5$ · $2 Mg_2O_5$ · $2 Mg_2O_5$ $2 Mg_2$

- B. 用 KSCN 溶液检验溶浸后溶液是否含有 Fe³⁺: Fe³⁺+3SCN⁻==Fe(SCN)₃
- C. Al_2O_3 溶 于 $(NH_4)_2SO_4$ 溶 液 : $Al_2O_3 + 6NH_4^+$ ===2 $Al^{3+} + 6NH_3$ ↑ + 3 H_2O
- D. $Mg_2B_2O_5 \cdot H_2O$ 溶 于 $(NH_4)_2SO_4$ 溶 液: $Mg_2B_2O_5 \cdot H_2O+10NH_4^+ = 2Mg^{2+}+2B^{3+}+6H_2O+10NH_3$ 个
- №[2024·吉林长春东北师大附中模拟]下列各组 离子能大量共存,且加入相应试剂后发生反应的离 子方程式正确的是 ()

选项	离子组	加入试剂	加入试剂后发生 的离子反应
A	I ⁻ \NH ₄ \ SO ₄ ²⁻	H ₂ O ₂ 溶液	$2I^{-} + 2H_{2}O_{2} = $ $I_{2} + 2H_{2}O + O_{2} \uparrow$
В	K ⁺ ,HCO ₃ , NO ₃	Na[Al(OH)4] 溶液	$[Al(OH)_4]^- + HCO_3^- = Al(OH)_3 \downarrow + H_2O + CO_2 \uparrow$
С	Fe ²⁺ 、Cl ⁻ 、	H₂S气体	$Fe^{2+} + H_2S = -$ $FeS \downarrow +2H^+$
D	C ₂ O ₄ ²⁻ \SO ₄ ²⁻ \	酸性 KMnO ₄ 溶液	$5C_2O_4^{2-} + 2MnO_4^{-} +$ $16H^+ = 10CO_2 \uparrow +$ $2Mn^{2+} + 8H_2O$

③[2024·福建莆田二模] 现有下列实验探究摩尔 盐[(NH₄)₂Fe(SO₄)₂·6H₂O]的化学性质。

装置	实验	试剂 a	现象
试剂a	1	紫色石蕊溶液	溶液变红色
	2	BaCl ₂ 溶液	产生白色沉淀
	3	稀硝酸溶液	溶液变黄色
摩尔盐溶液	4	浓 NaOH 溶液	产生具有刺激性气味的气体

下列方程式不能准确解释相应实验现象的是 ()

- A. ①中溶液变红:NH₄⁺+H₂O ⇒NH₃·H₂O+ H⁺、Fe²⁺+2H₂O ⇒Fe(OH)₂+2H⁺
- B. ②中产生白色沉淀:Ba²⁺+SO₄²⁻ ──BaSO₄ ↓
- C. ③中溶液变黄: Fe²⁺ + NO₃⁻ + 2H⁺ === Fe³⁺ + NO₂ ↑ + H₂O
- D. ④中产生有刺激性气味的气体: NH₄⁺ + OH⁻ ===H₂O+NH₃ ↑

考点 5 离子共存与离子推断

真题导向练

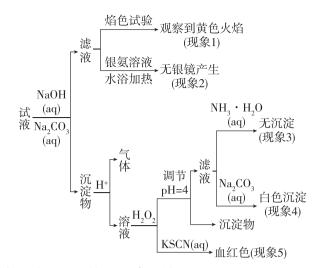
- ●「2021・天津卷」常温下,下列各组离子在给定溶 液中能大量共存的是
- A. pH=1 的溶液: Fe^{2+} 、 Mg^{2+} 、 SO_4^{2-} 、 NO_3^{-}
- B. pH=12 的溶液: K^+ 、 Na^+ 、 NO_3^- 、 CO_3^{2-}
- C. pH=7 的溶液:Na⁺、Cu²⁺、S²⁻、Cl⁻
- D. pH = 7 的溶液: $Al^{3+} \ K^+ \ Cl^- \ HCO_3^-$
- 2 [2021 福建卷] 室温下,下列各组离子一定能与 指定溶液共存的是
- A. 0. 2 mol·L⁻¹ 的 NH₄Cl 溶液: Na⁺、K⁺、 $SO_4^{2-} SiO_3^{2-}$
- B. 0. 1 mol·L⁻¹ 的 FeCl₃ 溶液: NH_4^+ 、 Ca^{2+} 、
- C. 0. 2 mol·L⁻¹ 的 H_2SO_4 溶液: Mg^{2+} 、 Fe^{2+} 、 $NO_3^ Cl^-$
- D. 0.1 mol·L⁻¹ 的 Ba(OH)。溶液:Na⁺、K⁺、 Cl_'ClO_
- **3**「2021·湖南卷〕对下列粒子组在溶液中能否大 量共存的判断和分析均正确的是

	粒子组	判断和分析
A	Na^+ Al^{3+} $Cl^ NH_3 \cdot H_2O$	不能大量共存,因发生反 应: Al ³⁺ + 4NH ₃ · H ₂ O ==== AlO ₂ ⁻ +4NH ₄ ⁺ +2H ₂ O
В	H^{+} K^{+} $S_{2}O_{3}^{2-}$ SO_{4}^{2-}	不能大量共存,因发生反 应:2H ⁺ + S ₂ O ₃ ²⁻ === S ↓ + SO ₂ ↑ + H ₂ O
С	Na^+ $\sqrt{F}e^{3+}$ $\sqrt{S}O_4^{2-}$ $\sqrt{H_2O_2}$	能大量共存,粒子间不 反应
D	H ⁺ ,Na ⁺ ,Cl ⁻ , MnO ₄ ⁻	能大量共存, 粒子间不 反应

- ④[2020・江苏卷]常温下,下列各组离子在指定溶 液中能大量共存的是
- A. $0.1 \text{ mol} \cdot L^{-1}$ 氨水: $Na^+ \setminus K^+ \setminus OH^- \setminus NO_3^-$
- B. $0.1 \text{ mol} \cdot L^{-1}$ 盐酸: $Na^+ \ K^+ \ SO_4^{2-} \ SiO_3^{2-}$
- C. 0. 1 mol·L⁻¹ KMnO₄ 溶液: NH₄⁺、Na⁺、 NO_3^- , I^-

D. 0. 1 $mol \cdot L^{-1} AgNO_3$ 溶液: $NH_4^+ Mg^{2+}$ $Cl^{-} SO_4^{2-}$

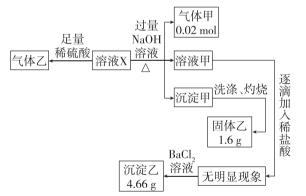
模拟预测练


考向1 离子共存

- **⑤**「2024·江西名校协作体期中〕常温下,下列溶液 中的微粒能大量共存的是 ()
- A. 加入铁产生氢气的溶液:K⁺、SO₄²⁻、Na⁺、ClO⁻
- B. pH<7 的溶液:Ba²⁺、Na⁺、I⁻、HCO₃⁻
- C. 加入硫酸镁的溶液:K⁺、Na⁺、NO₃、Cl⁻
- D. 加入氢氧化钠的溶液: $Na^+ \ Mg^{2+} \ Cl^- \ S^{2-}$
- ⑥[2024・江西部分学校月考] 下列各组离子能大 量共存,加入 NaClO 后发生氧化还原反应的是()
- A. Fe^{3+} , Mg^{2+} , SCN^{-} , SO_4^{2-}
- B. $Mg^{2+} \ Fe^{2+} \ NO_3 \ Cl^-$
- C. NH_4^+ , Al^{3+} , HCO_3^- , I^-
- D. $Cu^{2+} K^{+} SO_{4}^{2-} Cl^{-}$
- ●「2024・江西重点中学联考」下列各组离子中,在 给定的环境中一定能大量共存的是
- A. 能使甲基橙变红的溶液:S²⁻、SO²⁻、NO²、Na⁺
- B. 常温下,由水电离的 $c_*(H^+) = 10^{-12} \text{ mol} \cdot L^{-1}$ 的溶液中:Be²⁺、NO₃ 、K⁺、Cl⁻
- C. 在水溶液中:「Al(OH)』] 、HCO 、Ba²⁺、F
- D. 在漂白液中:OH⁻、Rb⁺、CO₃²⁻、SO₄²⁻
- ❸[2024·江西赣州全南中学期中]常温下,下列溶 液中可能大量共存的离子组是
- A. 水电离产生的 $c_*(H^+)=1\times 10^{-12} \text{ mol} \cdot L^{-1}$ 的 溶液:Mg²⁺、SO₄²⁻、NO₃ 、Cl⁻
- B. 含有大量 Fe³⁺ 的溶液: K⁺、Na⁺、[Al(OH)₄]⁻、 SO_4^{2-}
- C. 能 使 石 蕊 试 纸 变 红 的 溶 液: NH⁺、Na⁺、 $NO_3^ HCO_3^-$
- D. 含有大量 S² 的溶液:Na⁺、ClO⁻、Cl⁻、CO²⁻

- **⑨**[2024·江西宜春宜丰中学期中] 常温下,下列各组离子在指定条件下可能大量共存的是 ()
- A. $c(SO_3^{2-})=0.1 \text{ mol} \cdot L^{-1}$ 的溶液中: $K^+ \setminus MnO_4^- \setminus SO_4^{2-} \setminus H^+$
- B. $\frac{c(H^+)}{c(OH^-)} = 10^{12}$ 的溶液中:K⁺、Na⁺、HCO₃、Cl⁻
- C. 与 Al 反应能放出 H₂ 的溶液中: Na⁺、NH₄⁺、S²⁻、Br⁻
- D. 常温下,由水电离产生的 $c_{\pi}(OH^{-})=1\times10^{-12} \text{ mol} \cdot$ L^{-1} 的溶液中: H^{+} 、 Al^{3+} 、 Cl^{-} 、 NO_{3}^{-}

考向2 离子推断

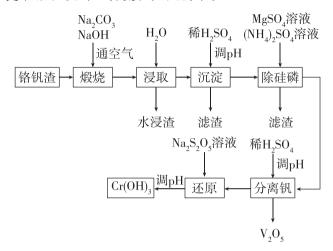

- ●[2024・江西南昌二中月考]有一澄清透明的溶液,可能含有大量的 Fe³+、Fe²+、H⁺、[Al(OH)₄]⁻、Al³+、CO₃² 、NO₃ 中的几种,向该溶液中滴入 1 mol・L⁻¹ NaOH 溶液一定体积后才产生沉淀。下列判断正确的是
- A. 溶液中一定不含 Fe²⁺
- B. 溶液中一定不含 Fe3+
- C. 溶液中可能含有 NO。
- D. 溶液中可能含有[Al(OH)4]-
- **①**[2024 · 江西名校协作体期中] 某溶液仅由 NO_3^- 、 Cl^- 、 SO_4^{2-} 、 CO_3^{2-} 、 NH_4^+ 、 Fe^{3+} 、 Al^{3+} 和 K^+ 中的若干种离子组成,且各离子浓度相等,取适量溶液进行如下实验:
- ①取该溶液加入过量 NaOH 溶液,加热,产生无色 气体;
- ②将①过滤、洗涤、灼烧,得到固体 a;
- ③向上述滤液中加足量 BaCl₂ 溶液,产生白色沉淀。根据以上实验,下列推断错误的是 ()
- A. 根据操作①,推断一定存在 NH4
- B. ②中固体 a 为氧化铁
- C. 原溶液中一定不存在 CO₃²⁻、Al³⁺,可能含有 K⁺
- D. 说明原溶液中一定存在 NO₃ 、Cl⁻、SO₄ 、NH₄ 、Fe³⁺
- №[2024・江西南昌三校联考] 现有一瓶标签上注明为葡萄糖酸盐(钠、镁、钙、铁)的复合制剂,某同学为了确认其成分,取部分制剂作为试液,设计并完成了如图所示实验。
- 已知:控制溶液 pH = 4 时, $Fe(OH)_3$ 沉淀完全, Ca^{2+} 、 Mg^{2+} 不沉淀。

该同学得出的结论正确的是

()

- A. 根据现象 1 可推出该试液中含有 Na+
- B. 根据现象 2 可推出该试液中并不含有葡萄糖酸 根离子
- C. 根据现象 3 和 4 可推出该试液中含有 Ca^{2+} ,但没有 Mg^{2+}
- D. 根据现象 5 可推出该试液中一定含有 Fe²⁺
- $oxedsymbol{0}$ [2024·江西宜春丰城九中月考]实验探究是进行科学发现、创造的实践活动。某溶液 X 中可能含有 NO_3^- 、 Cl^- 、 SO_4^{2-} 、 CO_3^{2-} 、 NH_4^+ 、 Fe^{2+} 、 Fe^{3+} 、 Al^{3+} 和 K^+ 中的几种,且所含阴离子的物质的量相等。为确定该溶液 X 的成分,某学习小组做了如下实验(假设气体全部逸出):

则下列说法正确的是


()

- A.若含有 Fe³+ ,一定含有 Cl¯ 、K⁺
- B. SO₄²⁻、NH₄⁺ 一定存在,NO₃⁻、Cl⁻可能不存在
- C. CO₃²⁻、Al³⁺、K⁺一定不存在
- D. 气体甲、沉淀甲一定为纯净物

素养提升练(一) 无机工艺流程——分离提纯型

真题导向练

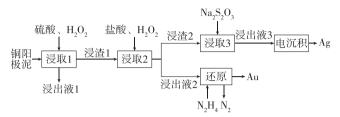
●[2023・新课标全国卷] 铬和钒具有广泛用途。 铬钒渣中铬和钒以低价态含氧酸盐形式存在,主要 杂质为铁、铝、硅、磷等的化合物。从铬钒渣中分离 提取铬和钒的一种流程如图所示。

已知:最高价铬酸根在酸性介质中以 $Cr_2O_7^{2-}$ 存在,在碱性介质中以 CrO_4^{2-} 存在。

回答下列问题:

- (1)煅烧过程中,钒和铬被氧化为相应的最高价含氧酸盐,其中含铬化合物主要为____(填化学式)。
- (2)水浸渣中主要有 SiO₂ 和____。
- (3)"沉淀"步骤调 pH 到弱碱性,主要除去的杂质是

(4)"除硅磷"步骤中,使硅、磷分别以 MgSiO ₃ 利
MgNH ₄ PO ₄ 的形式沉淀。该步需要控制溶液的
pH≈9 以达到最好的除杂效果。若 pH<9 时,会导
致
pH>9 时,会导致

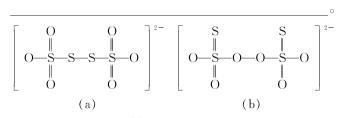

(5)"分离钒"步骤中,将溶液 pH 调到 1.8 左右得到 V_2O_5 沉淀。 V_2O_5 在 pH < 1 时,溶解为 VO_2^+ 或 VO_3^{3+} ;在碱性条件下,溶解为 VO_3^- 或 VO_4^{3-} 。上述

性质说明 V_2O_5 具有 (填标号)。

A. 酸性 B. 碱性 C. 两性

(6)"还原"步骤中加入焦亚硫酸钠 $(Na_2S_2O_5)$ 溶液,反应的离子方程式为

②[2024 · 安徽卷] 精炼铜产生的铜阳极泥富含Cu、Ag、Au等多种元素。研究人员设计了一种从铜阳极泥中分离提取金和银的流程,如下图所示。



回答下列问题:

- (1)Cu 位于元素周期表第 周期第 族。
- (2)"浸出液 1"中含有的金属离子主要是
- (3)"浸取 2"步骤中,单质金转化为 HAuCl₄ 的化学 方程式为
- (4)"浸取 3"步骤中,"浸渣 2"中的____(填化学式)转化为[Ag(S₂O₃)₂]³⁻。
- (5)"电沉积"步骤中阴极的电极反应式为

_____。"电沉积"步骤完成后,阴极区 溶液中可循环利用的物质为 (填化学式)。

- (6)"还原"步骤中,被氧化的 N_2H_4 与产物 Au 的物质的量之比为
- (7)Na₂S₂O₃ 可被 I₂ 氧化为 Na₂S₄O₆。从物质结构的角度分析 S₄O₆²⁻ 的结构为(a)而不是(b)的原因:

模拟预测练

③[2024·江西上饶婺源天佑中学期中] 我国科学家屠呦呦因成功从黄花蒿中提取抗疟药物青蒿素而获得 2015 年诺贝尔奖。从黄花蒿中提取青蒿素的流程如下:

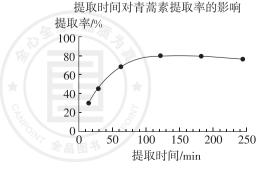
已知:青蒿素为白色针状晶体,易溶于乙醇、乙醚、苯

和汽油等有机溶剂,不溶于水,熔点为 $156\sim157$ \mathbb{C} , 热稳定性差。屠呦呦团队经历了使用不同溶剂和不同温度的探究过程,实验结果如下:

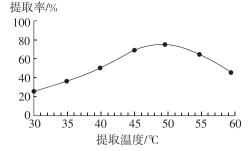
溶剂	水	乙醇	乙醚
沸点/℃	100	78	35
提取效率	几乎为0	35 %	95 %

回答下列问题:

	(1)	44	盐	ボ	查许	进行	店	称:	仂	H	加	見.
١	. 1 /	Ľ	共	144	向人	四年月	11/J	1 1 Y - 1	ロソ	\Box	口刀	ᇨ

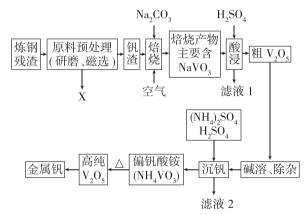

(2)用水作溶剂,提取无效的原因可能是

(3)从青蒿(粉末)中提取青蒿素以萃取原理为基础, 乙醚浸提法的具体操作如下:



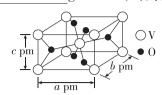
- ①乙醚浸提法涉及的操作中,未涉及的是(填标号)。
- A. 蒸馏 B. 分液 C. 过滤 D. 灼烧
- ②操作Ⅲ的主要过程可能是 (填标号)。
- A. 加水溶解,蒸发浓缩、冷却结晶
- B. 加 95%的乙醇,浓缩、结晶、过滤
- C. 加入乙醚进行萃取分液
- D. 加入乙醇后,再加入苯或汽油进行萃取
- (4)某科研小组通过控制其他实验条件不变,来研究 原料的粒度、提取时间和提取温度对青蒿素提取速 率的影响,其结果如图所示。

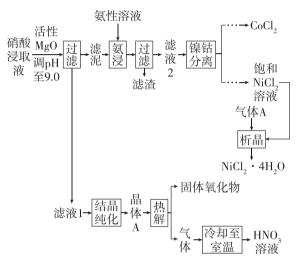
原料粒度对青蒿素提取率的影响 提取率/% 100 80 60 40 20 0 20 40 60 80 100 120 原料粒度/目



提取温度对青蒿素提取率的影响

由图可知控制其他实验条件不变,采用的最佳粒度、时间和温度分别为。

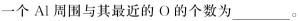

- (5)研究发现,青蒿素热稳定性差是因为青蒿素分子中的某个基团对热不稳定。分析用乙醚作溶剂,提取效率高于乙醇作溶剂的原因是
- $oldsymbol{\Phi}$ [2024·江西吉安宁冈中学期中]工业上常用炼钢残渣(主要含 FeO· V_2O_3 ,还有少量铁粉、SiO₂、 Al_2O_3 等杂质)为原料提取金属钒,其工艺流程如图所示。已知 N_A 表示阿伏伽德罗常数的值。

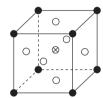

已知:焙烧后铁全部转化为+3价氧化物。

- (1)"研磨"的目的是_____
- "磁选"后分离出的 X 为____。
- (2)"焙烧"过程中,若转移电子数为 $2.5N_A$,则被氧化的 $FeO\cdot V_2O_3$ 为 mol_{\circ}
- (3)"酸浸"时,生成 V_2O_5 的离子方程式为_
- (4)若"沉钒"前溶液中 $c(VO_3^-)=0.16 \text{ mol} \cdot L^{-1}$,忽略溶液体积变化,为使钒元素的沉降率达到 99%,则"沉钒"后溶液中 $c(NH_4^+)=$ _____ mol · L^{-1} [已知:常温下, $K_{sp}(NH_4VO_3)=1.6\times 10^{-3}$]。"沉钒"过程中,加入稀 H_2SO_4 ,其目的是____
- (5)检验 NH₄VO₅ 沉淀是否洗净的操作是

(6)一种含钒的氧化物晶胞结构如图所示,则该晶体 g·cm⁻³(列出计算式即可)。 密度为

⑤ [2024·湖北沙市中学月考] Ni、Co 均是重要的 战略性金属。从处理后的矿石硝酸浸取液(含 Ni²⁺、 Co²⁺、Al³⁺、Mg²⁺)中,利用氨浸工艺可提取 Ni、Co. 并获得高附加值化工产品。工艺流程如下:

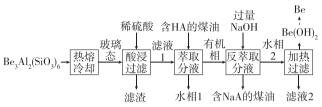



已知: 氨性溶液由 NH₃ · H₂O、(NH₄)₂SO₃ 和 (NH₄)₂CO₃ 配制。常温下, Ni²⁺、Co²⁺、Co³⁺与 NH_3 形成可溶于水的配离子; $\lg K_b(NH_3 \cdot H_2O) =$ -4.7;Co(OH)。易被空气氧化为 Co(OH)。;部分氢 氧化物的 K sp 如下表。

氢氧 化物	Co(OH) ₂	Co(OH) ₃	Ni(OH) ₂	Al(OH) ₃	Mg(OH) ₂
$K_{ m sp}$	5.9 \times 10 ⁻¹⁵	1.6 \times 10 ⁻⁴⁴	5.5×10^{-16}	1. 3×10^{-33}	5.6 $\times 10^{-12}$

回答下列问题:

- (1)活性 MgO 可与水反应,化学方程式为
- (2)常温下,pH=9.9 的氨性溶液中, $c(NH_3 \cdot H_2O)$ c(NH₄⁺)(填">""<"或"=")。
- (3)"氨浸"时,由 Co(OH)。转化为[Co(NH₃)₆]²⁺的 离子方程式为
- (4)(NH₄)₂CO₃ 会使滤泥中的一种胶状物质转化为 疏松分布的棒状颗粒物。滤渣的X射线衍射图谱 中,出现了NH,Al(OH)。CO。的明锐衍射峰。
- ①NH₄Al(OH)₂CO₃属于 (填"晶体"或"非 晶体")。
- ②(NH₄)。CO₃ 提高了 Ni、Co 的浸取速率,其原因是
- (5)①"析晶"过程中通入的酸性气体 A 为 ②由 CoCl。可制备 Al, CoO、晶体,其立方晶胞如 图。Al 与 O 最小间距大于 Co 与 O 最小间距,x、v 为整数,则 Co 在晶胞中的位置为 ;晶体中

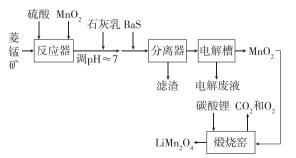


- (6)①"结晶纯化"过程中,没有引入新物质。1个晶体 A含6个结晶水,则所得HNO。溶液中n(HNO。)与 $n(H_2O)$ 的比值,理论上最高为
- ②"热解"对于从矿石提取 Ni、Co 工艺的意义,在于 可重复利用 HNO。和 (填化学式)。

素养提升练(二) 无机工艺流程——物质制备型

真题导向练

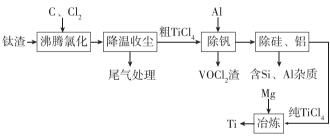
●[2024・湖北卷] 铍用于宇航器件的构筑。一种 从其铝硅酸盐[Be, Al, (SiO,)。]中提取铍的路径为:


已知: $Be^{2+} + 4HA \Longrightarrow BeA_2(HA)_2 + 2H^+$ 回答下列问题:

- (1)基态 Be $^{2+}$ 的轨道表示式为 。
- (2)为了从"热熔、冷却"步骤得到玻璃态,冷却过程的特点是。
- (3)"萃取分液"的目的是分离 Be²⁺ 和 Al³⁺,向过量 烧碱溶液中逐滴加入少量"水相 1"的溶液,观察到的 现象是
- (4)写出反萃取生成 Na₂[Be(OH)₄]的化学方程式:

____。"滤液 2"可以进入_____

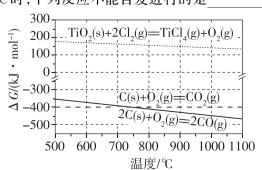
步骤再利用。


- (5)电解熔融氯化铍制备金属铍时,加入氯化钠的主要作用是。
- (6)Be(OH)₂ 与醋酸反应得到某含 4 个 Be 的配合物,4 个 Be 位于以 1 个 O 原子为中心的四面体的 4 个顶点,且每个 Be 的配位环境相同,Be 与 Be 间通过 CH₃COO⁻相连,其化学式为_____。
- ②[2023・全国乙卷节选] LiMn₂O₄ 作为一种新型 锂电池正极材料受到广泛关注。由菱锰矿(MnCO₃, 含有少量 Si、Fe、Ni、Al 等元素)制备 LiMn₂O₄ 的流 程如下:

已知: $K_{sp}[Fe(OH)_3]=2.8\times10^{-39}$, $K_{sp}[Al(OH)_3]=1.3\times10^{-33}$, $K_{sp}[Ni(OH)_2]=5.5\times10^{-16}$ 回答下列问题:

3[2022·湖南卷] 钛(Ti)及其合金是理想的高强度、低密度结构材料。以钛渣(主要成分为 TiO₂,含少量 V、Si 和 Al 的氧化物杂质)为原料,制备金属钛的工艺流程如下:

(6)煅烧窑中,生成 LiMn₂O₄ 反应的化学方程式是



已知"降温收尘"后,粗 TiCl。中含有的几种物质的沸点:

物质	TiCl ₄	VOCl ₃	SiCl ₄	AlCl ₃
沸点/℃	136	127	57	180

回答下列问题:

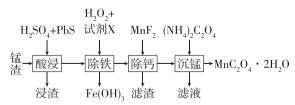
(1)已知 $\Delta G = \Delta H - T \Delta S$, ΔG 的值只决定于反应体系的始态和终态, 忽略 ΔH 、 ΔS 随温度的变化。若 $\Delta G < 0$, 则该反应可以自发进行。根据下图判断: 600 ℃时,下列反应不能自发进行的是

- A. $C(s) + O_2(g) = CO_2(g)$
- B. $2C(s) + O_2(g) = 2CO(g)$
- C. $TiO_2(s) + 2Cl_2(g) = TiCl_4(g) + O_2(g)$
- D. $TiO_2(s) + C(s) + 2Cl_2(g) = TiCl_4(g) + CO_2(g)$
- (2)TiO₂与C、Cl₂在600℃的沸腾炉中充分反应后, 混合气体中各组分的分压如下表:

物质	TiCl ₄	СО	CO_2	Cl ₂
分压/MPa	4.59×10^{-2}	1.84×10^{-2}	3.70×10^{-2}	5.98×10 ⁻⁹

- ①该温度下,TiO。与 C、Cl。反应的总化学方程式为
- ②随着温度升高,尾气中 CO 的含量升高,原因是
- (3)"除钒"过程中的化学方程式为

"除硅、铝"过程中,分离 TiCl。中含 Si、Al 杂质的方 法是


- (4)"除钒"和"除硅、铝"的顺序 (填"能"或
- "不能")交换,理由是

(5)下列金属冶炼方法与本工艺流程中加入 Mg 冶 炼 Ti 的方法相似的是。

- A. 高炉炼铁
- B. 电解熔融氯化钠制钠
- C. 铝热反应制锰
- D. 氧化汞分解制汞

模拟预测练

●「2024・江西抚州金溪一中检测〕草酸锰常用作 光敏材料、除污剂(如除墨水)等。以锰渣[主要成分 为 MnSO₄、PbSO₄、CaSO₄、Fe₂ (SO₄)₃、MnO₂、SiO₂ 等]为原料制备草酸锰晶体的工艺如图所示。

已知:①几种难溶氢氧化物沉淀的 pH 如下。

难溶氢氧化物	Fe(OH) ₃	Fe(OH) ₂	Mn(OH) ₂
开始沉淀的 pH	2.7	7.6	7.7
完全沉淀的 pH	3.7	9.6	9.8

②几种难溶电解质的溶度积常数如下。

电解质 CaF ₂		MnF_2	$MnC_2O_4 \cdot 2H_2O$		
K_{sp}	1.5×10^{-10}	5.3×10^{-3}	1.7×10^{-7}		

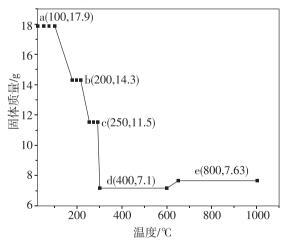
回答下列问题:

(1)"除铁"中双氧水的作用是

(用离子方程式表示),

应调节 pH 的范围为

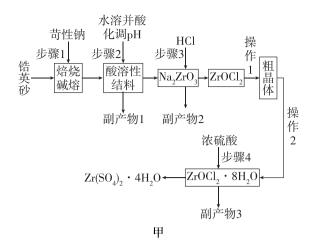
(2)分离 Fe(OH)。的操作需要使用的玻璃仪器有 ,利用 Fe(OH)。制


备铁红的操作是

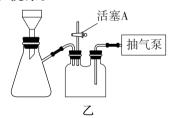
(3)化学上,平衡常数大于105时,认为该反应已完 全。请通过计算和必要的文字说明"除钙"过程中 Ca²⁺ 是否反应完全:

(4)C₂O₄²⁻ 的结构式为*O-

为配位原子。在"沉锰"中,C2O2- 过量时形成配合 物。已知: $Mn^{2+} + 2C_2O_4^{2-} \iff [Mn(C_2O_4)_2]^{2-}$ 的 lg K = 4.1; Mn³⁺ +2C₂O₄²⁻ \iff Mn(C₂O₄)₂] − 的 $\lg K = 16.6$ 。 $\lceil Mn(C_2O_4)_2 \rceil^{2-}$ 中 Mn^{2+} 的配位数为 ;在水溶液中,稳定性:[Mn(C2O4)2]2-


(5)一定质量的 $MnC_2O_4 \cdot 2H_2O($ 摩尔质量为 M=179 g·mol⁻¹)在空气中灼烧,每一步所得固体纯净 物的质量与温度关系如图所示。

a→b 段反应的化学方程式是


。e 点对应氧化物的化学式为

⑤「2024·江西师大附中期中〕硫酸锆「Zr(SO。)。· 4H₂O]是制取原子能级锆及其他锆化合物的中间原 料,并大量用作皮革鞣剂、羊毛处理剂、催化剂等。 以锆英砂(主要成分为 ZrO₂,伴有杂质 SiO₂)为原 料,利用碱熔法再进行酸浸制备硫酸锆的工艺过程 如图甲所示。

已知: ①Na₂ZrO₃、ZrOCl₂、Zr(SO₄)₂均易溶于水,难 溶于酒精及其他有机溶剂。

- $2 \operatorname{ZrOCl}_2 \Longrightarrow \operatorname{ZrO}^{2+} + 2 \operatorname{Cl}^- ; \operatorname{ZrO}^{2+} + \operatorname{SO}_4^{2-} \Longrightarrow$ ZrOSO40
- $\Im ZrO^{2+} + 2H_2O \Longrightarrow ZrO(OH)_2 + 2H^+$
- (1)步骤1中用到的仪器有泥三角、(填 "铁"或"瓷")坩埚、坩埚钳等。
- (2)下列说法正确的是
- A. 副产物 1 为 H₂SiO₃、副产物 2 为 NaCl、副产物 3 为 HClO
- B. 步骤 3 加入 HCl 的作用是与 Na₂ ZrO₃ 反应生成 ZrOCl。,还能降低 ZrOCl。的溶解度
- C. 操作 1 为蒸发结晶、趁热过滤;操作 2 为重结晶
- D. 制备的 Zr(SO₄)₂·4H₂O 溶于水后溶液呈酸性
- (3)利用如图乙所示装置,经过一系列操作完成操作 2 中的抽滤和洗涤。

请选择合适的编号,按正确的操作顺序补充完整。 开抽气泵→a→d→b→

→b→e→关抽气泵。

a. 转移固液混合物:b. 确认抽干:c. 加浓盐酸洗 涤;d. 关闭活塞 A;e. 打开活塞 A;f. 加无水乙醇 洗涤。

(4)ZrOCl₂·8H₂O 洗涤后,在800 ℃下灼烧可得一 种压电陶瓷原料 ZrO。,写出该灼烧过程的化学方程


(5)实验室可以用络合滴定法测定锆含量。已知: ZrO^{2+} 与二甲酚橙生成红色络合物, ZrO^{2+} 能与

生络合反应(1:1)生成无色络合物,且络合能力 更强。

样品 加入盐酸 移取 10.00 mL 于 称量 m g . 加水至 250 mL 锥形瓶中,加水 2滴二甲酚橙,趁热用 6.000 mol·L⁻¹ 盐酸 ►c mol・L⁻¹ EDTA 标准溶 0.200 0 g 盐酸羟胺 液滴定.消耗 V mL ①EDTA 是常见的六齿配体,与 ZrO2+络合的原子 可能是 EDTA 中的 原子。(填元素符号)

(用含 $c \setminus V \setminus m$ 的 ②产品中锆的含量是 代数式表达)。

③下列有关上述滴定操作的说法正确的是

- A. 滴定管活塞涂凡士林:用手指蘸取少量凡士林涂 抹一薄层在活塞 a、b 处(如图丙)的四周,平行插 入活塞槽中,然后朝同一个方向转动
- B. 接近滴定终点时适当减慢滴加速度,必要时采用 半滴操作
- C. 读数时可将滴定管从架上取下,捏住管上端无刻 度处,使滴定管保持垂直
- D. 第一次滴定时若测得消耗标准液体积小于 5.00 mL, 则第二次滴定时可在稀释待测液后重新滴定来 减小误差